Brine Maintenance for Rinks
A re-cap of How to Interpret a Brine Analysis Report

Derek Hawes

In the Summer 1995 edition of Facility Focus, we discussed "Summer Maintenance for Arenas" which included an overview of a proper brine analysis. Levels of iron, sediment, and rust inhibitors, as well as the pH, are all important items to monitor and can only be determined through a laboratory analysis. Therefore, you should have the brine analyzed at least once per year. Knowing how to interpret the report is important, so as a follow-up we will take a closer look at a Brine Analysis Results sheet (Figure 1) and review the various test results and recommended actions.

Taking the Sample

The sample should be taken from the mixing valve near the brine pump. For an accurate analysis, it is best to let the brine circulate through the system for a while before taking the sample and then drain some brine off in a bucket first. Once the color is consistent, approximately 600 ml to one litre of brine should be put in a clean bottle. Remember to label the sample as BRINE, and include the name of your facility and the sample was taken.

Iron

High levels of iron are usually attributed to rust in the system from corrosion of carbon steel components such as the headers, chiller tubes, or brine pump. Without proper maintenance of rust inhibitor, these levels can usually be kept below 10 parts per million (ppm). Once they exceed this level, a brine filtration system can be added to filter out excess amounts. In this example, the levels of iron are still too high, indicating that the filter cartridge should be cleaned or replaced.

Suspended Solids

Suspended Solids can be made up of a number of things, from chemicals that have fallen out of solution, to contaminants in your system. These solids eventually begin to accumulate on the walls of the return bends as the flow of the brine makes the 4” radius turn at the end of the rink floor. The pipe itself is 1” diameter, but the return bends are closer to 3/4” diameter. If this goes undetected, it can eventually block the brine loop.

Specific Gravity

The specific gravity of your brine should be checked regularly by the rink staff on a regular basis. This is done by using a hydrometer, a glass tube which is weighted at the bottom and has a graduated scale inside. For an accurate reading, it is important to let the brine sample warm up before testing. The hydrometer is to be used in brine at 60ºF, but there are correction factors available for other temperatures.

Specific gravity is measured relative to water which has a specific gravity of 1, and is adjusted by adding calcium chloride flake. This affects the concentration of calcium chloride in the solution, as well as the freezing point. As the concentration increases, more energy is required to pump the brine through the system, but the freezing point of the brine decreases. (Note: at a specific gravity of 1.29, the freezing point reverses and begins to increase).

The recommended specific gravity for brine is 1.21 which has a concentration of 22.4% actual calcium chloride and a freezing point of -94ºF (-23ºC). Most brine pumps are selected based on a specific gravity of 1.21, so for proper system performance, it is important to maintain this level. If levels of calcium chloride are too high, they can be adjusted by diluting the solution with water. If they are too low, then calcium chloride flake can be mixed in a barrel and added to the system through the mixing valve. While some rinks use the expansion tank for adding the brine, this is not the proper procedure.
<table>
<thead>
<tr>
<th>Analysis</th>
<th>Test Results</th>
<th>Recommended Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Iron (PPM)</td>
<td>41</td>
<td>< 10 PPM</td>
</tr>
<tr>
<td>Suspended Solids (PPM)</td>
<td>956</td>
<td>0.01=LBS./1000 Gal</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.206</td>
<td>1.2 To 1.22</td>
</tr>
<tr>
<td>Freezing Point (ºF)</td>
<td>-7.8ºF</td>
<td>-5.8ºF to -13ºF</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>22.0%</td>
<td>21.5% to 23.3%</td>
</tr>
<tr>
<td>pH Level</td>
<td>8.7</td>
<td>9.0 To 10 Brinehib</td>
</tr>
<tr>
<td>Color/Clarity</td>
<td>Turbid</td>
<td>7.5 To 9.0 Chromate</td>
</tr>
<tr>
<td>Ammonia (PPM)</td>
<td>67</td>
<td>Clear</td>
</tr>
<tr>
<td>Brinehib (PPM)</td>
<td>34</td>
<td>Nil</td>
</tr>
<tr>
<td>Chromate (PPM)</td>
<td>774</td>
<td>Phosphonate</td>
</tr>
</tbody>
</table>

Recommended Actions To Be Taken:

- Total Iron: High-Change Filter Cartridge
- Suspended Solids: Slightly High
- Calcium Chloride: Slightly Low-Adjust to recommended range
- pH Level: Good
- Brinehib: Low-Add 10 LB. per 1000 Gallons
- Chromate: N/A

* Note: Ammonia levels have continued to subside since last report

*Figure 1- Brine Analysis Result sheet:

Follow-up analysis for a rink that had a failure of their chiller. The results of the first brine analysis noted high levels of iron and ammonia. The existing brine charge was reused after a titanium plate chiller was installed. Inhibitor and a brine filtration system were also added.*

ARTICLES:

- Take 'Control' of Your Energy Bill.
- Gas Leak Detectors.
- Saving $$$ On Energy Bills.
- Brine Maintenance For Rinks.
- Start 'Em Up!
- Cimco keeps Air Canada Centre on Ice